Well-posedness for the 1d Zakharov-rubenchik System

نویسندگان

  • FELIPE LINARES
  • CARLOS MATHEUS
چکیده

Local and global well-posedness results are established for the initial value problem associated to the 1D Zakharov-Rubenchik system. We show that our results are sharp in some situations by proving Ill-posedness results otherwise. The global results allow us to study the norm growth of solutions corresponding to the Schrödinger equation term. We use ideas recently introduced to study the classical Zakharov systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Regularity Global Well-posedness for the Zakharov and Klein-gordon-schrödinger Systems

We prove low-regularity global well-posedness for the 1d Zakharov system and 3d Klein-Gordon-Schrödinger system, which are systems in two variables u : Rx × Rt → C and n : Rx × Rt → R. The Zakharov system is known to be locally well-posed in (u, n) ∈ L2×H−1/2 and the Klein-Gordon-Schrödinger system is known to be locally well-posed in (u, n) ∈ L × L. Here, we show that the Zakharov and Klein-Go...

متن کامل

Local Ill-posedness of the 1d Zakharov System

Ginibre-Tsutsumi-Velo (1997) proved local well-posedness for the Zakharov system    i∂tu +∆u = nu ∂ t n −∆n = ∆|u| u(x, 0) = u0(x) n(x, 0) = n0(x), ∂tn(x, 0) = n1(x) u = u(x, t) ∈ C n = n(x, t) ∈ R x ∈ R, t ∈ R for any dimension d, in the inhomogeneous Sobolev spaces (u, n) ∈ Hk(Rd)×Hs(Rd) for a range of exponents k, s depending on d. Here we restrict to dimension d = 1 and present a...

متن کامل

Well-posedness results for the 3D Zakharov-Kuznetsov equation

We prove the local well-posedness of the three-dimensional Zakharov-Kuznetsov equation ∂tu+∆∂xu+u∂xu = 0 in the Sobolev spaces Hs(R3), s > 1, as well as in the Besov space B 2 (R 3). The proof is based on a sharp maximal function estimate in time-weighted spaces.

متن کامل

A ug 2 00 8 Low regularity global well - posedness for the two - dimensional Zakharov system ∗

The two-dimensional Zakharov system is shown to have a unique global solution for data without finite energy if the L-norm of the Schrödinger part is small enough. The proof uses a refined I-method originally initiated by Colliander, Keel, Staffilani, Takaoka and Tao. A polynomial growth bound for the solution is also given.

متن کامل

Well–Posedness of a Model for Water Waves with Viscosity

The water wave equations of ideal free–surface fluid mechanics are a fundamental model of open ocean movements with a surprisingly subtle well–posedness theory. In consequence of both theoretical and computational difficulties with the full water wave equations, various asymptotic approximations have been proposed, analysed and used in practical situations. In this essay, we establish the well–...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008